[1] Alder, M., Togneri, R., Lai, E., Attikiouzel, Y., Kohonen’s algorithm for the numerical parametrisation of manifolds, Pattern Recognition Letters 11, pp. 313-319, 1990.
[2] Aumann, G., Approximate development of skew ruled surfaces. Comput. & Graph. 13 361-366, 1989.
[3] Aumann, G., Interpolation with developable Bézier patches. Computer Aided Geometric. Design. 8 409-420, 1991.
[4] Barhak, J., Fischer, A., Parametrization and reconstruction from 3D scattered points based on neural network and PDE techniques, IEEE Transactions on Visualization and Computer Graphics, Vol. 7, No.1, 2001.
[5] Barsky, B., Computer Graphics and Geometric Modelling Using Beta-splines, Springer-Verlag, Berlin, 1988.
[6] Blum, H., A transformation for extracting new descriptions of shape, IEEE Proceedings of the Symposium on Models for the Speech and Vision Form, Boston, pp. 362-380, 1964.
[7] Bodduluri, R., Ravani, B., Design of developable surfaces using duality between plane and point geometries, Computer-Aided Design, 10, pp. 621–632, 1993.
[8] Bodduluri, R., Ravani, B., Geometric Design and Fabrication of Developable Surfaces, ASME Adv. Design Autom. 2, pp. 243-250, 1992.
[9] Boehm, W., Farin, G., and Kahmann, J., A survey of curve and surface methods in CAGD, Computer Aided Geometric Design, 1, pp.1-60, 1984.
[10] de Boor, C., On calculating with B-splines, J. Approx. Theory, 6:50-62, 1972.
[11] Belongie, Serge, Rodrigues’ Rotation Formula, From MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein.
[12] Borgulya, I., Neurális hálók és fuzzy-rendszerek, Dialóg Campus Kiadó, Budapest-Pécs, 1998.
[13] Branhill, R. E., Representation and Approximation of Surfaces, in: Rice, J.R. (ed): Mathematical Software III., Academic Press, New Yok, 1977.
[14] Budó, Á., Kísérleti fizika, I kötet, Tankönyvkiadó, Budapest, pp 116-118, 1981.
[15] Castillo, E., Functional Networks, Neural Processing Letters 7, pp. 151-159, 1998.
[16] Coons, S.A., Surface Patches and B-spline Curves, Computer Aided Gemetric Design, Academic Press, 1974.
[17] Cox, M., The numerical evaluation of B-splines, DNAC 4, NAtional Physical Laboratory, 1971.
[18] Coxeter, H. S. M., Projektív geometria, Gondolat Könyvkiadó, Budapest, 1986., Eredeti: Porjective Geometry, Second Edition, University of Toronto Press, Toronto, 1974.
[19] Datta, A., Parui, S.K., Chaudhuri, B.B., Skeletonization by topology-adaptive self-organizing neural network, Pattern Recognition 34, Elsevier Science, pp. 617-629, 2001.
[20] Eck, M., Hadenfeld, J., Local energy fairing of B-spline curves, in: Farin, G., Hagen, H., Noltemeier, H. (Eds.), Computing 10. Springer, Berlin, 1995.
[21] Farin, G., Curves and Surfaces for Computer Aided Geometric Design A Practical Guide, Academic Press, 1996.
[22] Floater, M., Parametrization and smooth approximation of surface triangulations, Computer Aided Gemetric Design, 14, pp. 231-250, 1997.
[23] Foley, T., Hagen, H., Advances in Scattered Data Interpolation, Surv. Math. Ind. Vol.4., pp.71-84., 1994.
[24] Freeman, J., Skapura., D., Neural Networks; Algorithms, Applications and Programming Techniques, Addison-Wesley, 1991.
[25] Frey, W., H., Bindschadler, D., Computer Aided Design of a Class of Developable Bézier Surfaces, General Motors R&D Publication 8057, 1993.
[26] Gordon, W., Riesenfeld, R., B-spline curves and surfaces, In R. E. Barnhill and R. F. Riesenfeld editors, Computer Aided Geometric Design, p. 95-126, Academic Press, 1974.
[27] Greiner, G., Hormann, K., Interpolating and approximating scattered 3D data with hierarchical tensor product B-splines, in: Méhauté, A. L., Rabut, C., Schumaker, L. (Eds.), Surface Fitting and Multiresolution Methods. Vanderbilt University Press, Nashville, pp. 163-172., 1997.
[28] Gu, P., Yan, X., Neural Network Approach to the Reconstruction of Freeform Surfaces for Reverse Engineering, Computer Aided Design, Vol. 27, No.1. pp.59-64, 1995.
[29] Herman, I., The use of projective geometry in computer graphics, LectureNotes in Computer Science, 564, Springer-Verlag, 1991.
[30] Hermann, T., Kovács, Z., Várady, T., Special applications in surface fitting, in: Starsser, W., Klein, R., Rau, R. (Eds.), Geometric Modeling: Therory and Practice. Springer, pp. 14-31, 1997.
[31] Hlavaty, V., Differential line geometry, Nordhoff Ltd, Groningen, 1953.
[32] Hoffmann M., Kovács E., Interpolation possibilities using rational B-spline curve, Acta Acad. Paed. Agriensis, Vol. XXV., pp.103-107., 1998.
[33] Hoffmann M., Kovács E., Constructing ruled B-spline surfaces by Kohonen neutral network, Acta Acad. Paed. Agriensis, TOM. XXVII., Sectio Matematicae, pp. 63-68, 2000.
[34] Hoffmann M., Kovács E., Developable surface modelling by neutral network, Computers & Mathematics with Applications (közlésre elfogadva 2002)
[35] Hoffmann M., Interpolation by Beta-spline, Proceedings of the International Conference of Applied Informatics, pp. 36-44, Eger, 1993.
[36] Hoffmann M., Modified Kohonen Neural Network for Surface Reconstruction, Publ. Math. Debrecen, 54 Suppl. 857-864, 1999.
[37] Hoffmann, M., Várady, L., Free-form curve design by neural networks, Acta. Acad. Paed. Agriensis, Tom.XXIV., pp. 99–104, 1997.
[38] Hoffmann, M., Várady, L., Free-form Surfaces for Scattered Data by Neural Networks, Journal for Geometry and Graphics, Vol.2, No.1, pp. 1–6, 1998.
[39] Hormann, K., Greiner, G., An efficient global parametrization method, in: Laurent, P.-J., Sablonniére, P., Schumaker, L. (Eds.), Curve and Surface Design: Saint Malo 1999. Vanderbilt University Press, Nashville, pp. 153-162., 2000.
[40] Horn-Yang Chen, Pottmann, H., Approximation by Ruled Surfaces, Technical Report, Nr.46, 1997.
[41] Horváth, I., Juhász, I., Számítógéppel segített gépészeti tervezés, Műszaki könyvkiadó, 1996.
[42] Hoschek, J., Lasser, D., Fundamentals of Computer Aided Geometric Design, A. K. Peters, Wellesley, MA, 1993.
[43] Hoschek, J., Pottmann, H., Interpolation and approximation with developable B-spline surfaces. In: Mathematical Methods for Curves and Surfaces, (Edited by M. Dćhlen et al.), pp.255-264, Vanderbilt University Press, Nashville, 1995.
[44] Hoschek, J., Schneider, M., Interpolation and approximation with developable surfaces. In: Curves and Surfaces with Applications in CAGD, (Edited by A. Le Méhauté et al.), pp.185-202, Vanderbilt University Press, Nashville, 1997.
[45] Hoschek, J., Schwanecke, U., Interpolation and approximation with ruled surfaces, in: The Mathematics of Surfaces VII. (ed.:Robert Cripps), Elsevier, pp. 213–231, 1988.
[46] Hoschek, J., Dual Bézier Curves and Surfaces, Surfaces in Computer Aided Geometric. Design, R. E. Barnhill & W Boehm, eds., North Holland, pp.147-156, 1983.
[47] Iglesias, A., Gálvez, A., Applying functional Networks to fit data points from B-spline surfaces, in: Proceedings of the Computer Graphics Internatinal, CGI’, Hong-kong pp., 329-332, 2001.
[48] Juhász, I., Számítógépi grafika és geometria, Miskolci Egyetemi Kiadó, 1993.
[49] Klein, F., Vorlesungen Über Höhere Geometrie, Springer, Berlin, 1926.
[50] Kohonen, T., Self-organization and associative memory, Springer Verlag, 1984.
[51] Kovács E., Studying and improving linear mappings by artificial neural networks, Acta Acad. Paed. Agriensis TOM. XXVI., Sectio Matematicae, pp.104-107, 1999.
[52] Kovács E., Curve reconstruction from scaterred data by Kohonen network, Acta Acad. Paed. Agriensis, Vol. XXVII., Sectio Matematicae, pp.69-74., 2000.
[53] Lang, J., Röschel, O., Developable -Bézier surfaces. Computer Aided Geom. Design. 9 291-298, 1992.
[54] Lippmann, R.P., An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, pp.18-21, April 1987.
[55] Loop, C., DeRose, T., Generalized B-spline Surface of Arbitrary Topology, Computer Graphics, Vol.24., N.4., pp.347-356, 1990.
[56] Ma, W., Kruth, J., Parametrization of randomly measured points for least squares fitting of B-spline curves and surfaces, Computer Aided Design, 27 (9), pp. 663-675, 1995.
[57] Márkus, A., Renner, G., Váncza, J., Genetic algorithms in free form curve design, Daehlen, M., Lyche, T., Schumaker, L. (Eds.), Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, pp. 343-354., 1995
[58] McCullogh, W. és Pitts, W., How We Know Universals: the Perception of Auditory and Visual Forms, Bulletin of Math. Biophysics, Vol.9, pp.127-147, 1947.
[59] McCullogh, W. és Pitts, W., A Logical Calculus of the Ideas Immanent in Nervous Activity, Bulletin of Math. Biophysics, Vol.5, pp.115-133, 1943.
[60] Neumann, J., Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components, in: Automata Studies, Princeton University Press, Princeton, pp.43-98, 1956.
[61] Nielson, G.M., Franke, R., Surface Construction Based Upon Triangulations, in: Surfaces in CAGD, North-Holland, Amsterdam, 1983.
[62] Pfeifle, R., Seidel, H.P., Spherical Triangular B-splines with Application to Data Fitting, EUROGRAPHICS ’95, Vol.14., N.3., pp.89-96, 1995.
[63] Piegl, L., Tiller, W., The NURBS Book, Springer Verlag, 1997.
[64] Pottmann, H., Farin, G., Developable rational Bezier and B-spline surfaces, Computer Aided Geometric Design, 12, pp. 513–531, 1995.
[65] Pottmann, H., Peternell, M., Ravani, B., An introduction to line geometry with applications, Computer Aided Geom. Design.  31, pp.3-16, 1999
[66] Pottmann, H., Wallner, J., Computational Line Geometry, Springer -Verlag, Berlin Heidelberg, 2001.
[67] Pottmann, H., Wallner, J., Approximation Algorithms for Developable Surfaces, Technical Report, Nr.51, 1998.
[68] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., Numerical Recipes in Pascal, The Art of Scientific Computing, Cambridge University Press, 1989.
[69] Rényi, A., Wahrscheinlichkeitsrechnung, VEB Deutscher Verlag der Wissenschaften, 1962.
[70] Riesenfield, R.F., Applications of B-spline Approximation to Geometric Problems of Computer Aided Design, PhD disszertáció, Syracuse University, 1973.
[71] Rogers, D. F., Adams, J. A., Mathematical elements for computer graphics, Second Edition, McGarw-Hill pulishing Company, 1990.
[72] Rojas, R., Neural Networks. A Systematic Introduction, Springer-Verlag, 1996.
[73] Rousseeuw, P. J., Leroy, A. M., Robust Regression and Outlier Detection, Wiley, New York, 1987.
[74] Schoenberg, I. Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math, 4:45-99, 1946.
[75] Shepard, D., A two Dimensional Interpolation Function for Irregularly Spaced Data,ProceedingsoftheACMNat.Conf., pp.517-524, 1965.
[76] Strommer Gyula, Geometria, Tankönyvkiadó, Budapest, 1988.
[77] Struik, D. J., Lectures on Classical Differential geometry, Dover Publications, Inc., Reprint, 1988.
[78] Tiller, W., Rational B-splines for Curve and Surface Representation, IEEE Comp.Graph. and Appl., Vol.3., N.9., pp.36-46., 1983.
[79] Torkkola, K. et al., Status Report of the Finnish Phonetic Typewriter Project, in: Kohonen et al (eds.): Artificial Neural Networks, North-Holland, Amsterdam, pp.771-776, 1991.
[80] Várady, T., Martin, R., Cox,J., Reverse engineering of geometric models –an intruduction, Computer Aided Gemetric Design, 29 (4) pp. 255-268, 1997.
[81] Várady, L., Hoffmann, M., Kovács, E., Improved Free-form Modelling of Scattered Data by Dynamic Neural Networks, Journal for Geometry and Graphics, Vol.3,No.2, pp.177–181, 1999.
[82] Várady, L., Analysis of the Dynamic Kohonen Network Used for Approximating Scattered Data, Proceedings of the 7th ICECGDG, Cracow, pp.433–436, 1996.
[83] Weiss, V.,Andor, L., Renner, G., Várady, T., Advanced surface fitting techniques, Computer Aided Gemetric Design, 19 pp. 19-42, 2002.
[84] Weisstein, Eric W., Point-Line Distance 2-Dimensional, From MathWorld-A Wolfram Web Resource.
[85] Weisstein, Eric W.,Point-Line Distance 3-Dimensional. From MathWorld-A Wolfram Web Resource.
[86] Yamaguchi, F., Curves and Surfaces in Computer Aided Geometric Design, Springer-Verlag, Berlin, 1988.
[87] Arfken, G., Circular Cylindrical Coordinates, §2.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 95-101, 1985.
[88] Bíró Sándorné, Szabados Tamás: Vektoranalízis, Műszaki Könyvkiadó, Budapest, 1983
[89] Bódis Katalin: Geometriai transzformációk alkalmazása a geoinformatikában, 1999, online jegyzet
[90] H. S. M. Coxeter: A geometriák alapjai, Műszaki Könyvkiadó, Budapest, 1987
[91] Csepregi Szabolcs: Forgatás
[92] Fried Ervin: Algebra I. Elemi és lineáris algebra, Nemzeti Tankönyvkiadó, Budapest, 2000
[93] Hajnal Imre: Matematika a speciális matematika I. osztálya számára, 1994, Nemzeti Tankönyvkiadó, Budapest
[94] Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 1966
[95] Juhász Imre, Lajos Sándor: Számítógépi grafika, Miskolc, 2007, online jegyzet
[96] Juhász Imre: OpenGl, Mobidiák könyvtár, 2003, online jegyzet
[97] Kecskemétiné Pál Éva: Homogén koordináták és transzformációk
[98] Kovács E., Rotation and Reflection in simple way, Annales Mathematicae et Informaticae, Volume 3X. (to appear) 2011.
[99] Krammer Gergely:Koordináta-rendszereink az euklideszi térben http://.../grafika/GrafikaKrammer41-54.pdf
[100] Reiman István: A geometria és határterületei, Gondolat, Budapest, 1986
[101] Schwarcz Tibor: Bevezetés a számítógépi grafikába, Mobidiák könyvtár, 2005, online jegyzet
[102] Székely Vladimir, Poppe András: A számítógépes grafika alapjai IBM PC-n, Computerbooks, Budapest, 1992
[103] Tevian Dray & Corinne A. Manogue, Conventions for Spherical Coordinates,, 2002.
[104] Tornai Róbert: Fejezetek a számítógépi grafikából, Mobidiák könyvtár, 2004, online jegyzet
[105] Alan Watt, Fabio Policarpo: 3D Games: Real-Time Rendering and Software Technology, New York : ACM Press, 2001
[106] William H., Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third Edition, Cambridge University Press, 1256 pp., 2007.
[107] ábra:
[108] ábra:
[109] ábra: