2. fejezet - Mátrixok (Matrices)

Tartalom

Nevezetes mátrixok
Mátrix determinánsa (Determinant)
Mátrixműveletek (Matrix Operations)
Mátrixok összeadása (Matrix addition and subtraction)
Mátrix szorzása számmal (Matrix skalar multiplication)
Mátrixok szorzása (Matrix multiplication)

[92] A matematikában – de általában az életben is – gyakoriak az olyan rendszerek, amelynek „jellemzéséhez” több szám kell. (Például egy tetraéder jellemezhető az éleinek hosszával, egy elektromos hálózat a csomópontok közötti részek ellenállásának nagyságával, stb.)

Ezekben az esetekben természetesen nem csak az számít, hogy milyen adatok szerepelnek, hanem az is, hogy ezek az adatok egymáshoz képest hogyan helyezkednek el. Ezzel lehet meghatározni, hogy egy-egy adat mit jellemez. Ilyen esetekben a szóban forgó alakzathoz tartozó mátrixról beszélünk.

A mátrixoknak különböző alakjuk lehet annak megfelelően, hogy a benne szereplő számokat hogyan helyeztük el. A leggyakrabban téglalap alakú mátrixokat használunk.

Mátrixaknak tekintjük tehát adatoknak téglalap alakban való elrendezését. E téglalapokról feltesszük, hogy véges sok soruk és véges sok oszlopuk van. A mátrixban szereplő adatokat a mátrix elemeinek nevezzük. Ezek az adatok általában számok, de más adatok is előfordulhatnak, például függvények, vagy újabb mátrixok. Az elemeket azzal határozzuk meg, hogy egy-egy elemről megmondjuk, melyik sorban és melyik oszlopban áll. Az itt lévő sor- és oszlopszámot az elemhez írjuk kettős indexként. Az valamely mátrixnak az i-edik sorában és j-edik oszlopában lévő elemet jelöli. Tekintsünk egy általános -es mátrixot, amelynek sora és oszlopa van:

A mátrixokat rendszerint zárójelbe tesszük, jelölve hogy a táblázatot egyetlen egységként kezeljük. Az matematikai irodalomban általában kerek zárójelet használnak, ebben a könyvben a komputergrafikában szokásos szögletes zárójeles jelölést alkalmazzuk.

Tehát a mátrixot azzal tudjuk meghatározni, ha megadjuk a sorainak és oszlopainak számát, valamint azt, hogy egy-egy előírt helyen milyen szám áll. Ez a szám tehát egy helynek a függvénye. A hely pedig nem más, mint egy számpár. Így a mátrixot egy olyan függvénynek tekintjük, amely egy természetes számokból álló számpárhoz egy számot rendel hozzá. A számpárban szereplő első számnak a sorok számánál, a második számnak pedig az oszlopok számánál kell kisebb vagy egyenlőnek lennie. Vegyük figyelembe, hogy számos programnyelvben nullától kezdődik a számozás, ekkor érteleszerűen 1-et le kell vonni minden indexelésből. Speciálisan egyetlen sort vagy egyetlen oszlopot, sőt egyetlen elemet is mátrixnak tekinthetünk.

Két mátrixot akkor tekintünk egyenlőnek, ha ugyanannyi soruk és oszlopuk van, és a megfelelő helyeken álló elemek megegyeznek. Viszont nem kell megkövetelnünk az értékkészletek megegyezését, vagyis, ha például egy valós elemű mátrix minden eleme racionális, akkor nem tekintjük különbözőnek attól a mátrixtól, amelyik „ugyanez”, csak éppen racionális elemű mátrixnak értelmeztük.

Nevezetes mátrixok

  • Ha a mátrixnak egy sora vagy egy oszlopa van, azaz -es vagy -es, akkor sor-, illetve oszlopvektornak nevezzük.

  • Amennyiben a mátrix sorainak száma megegyezik az oszlopainak számával, a mátrix négyzetes.

  • A diagonálmátrix olyan négyzetes mátrix, melynek csak főátlójában vannak 0-tól eltérő elemek.

  • Az egységmátrix olyan diagonálmátrix, melynek főátlóbeli elemei egységek, jele: .

  • Nullmátrix minden eleme 0.

  • Egy mátrix transzponáltja a sorok és oszlopok felcserélésével nyert mátrix.

    Pl:

    továbbá érvényesek az alábbi szabályok:

  • Egy A négyzetes mátrixnak akkor létezik inverze, ha az mátrix kielégíti az és egyenleteket, ekkor az inverzmátrix. Egy mátrixnak csak abban az esetben lehet inverze, ha a determinánsa nem nulla, . Érvényesek az alábbi szabályok:

  • -es mátrix inverze:

  • Az ortogonális mátrix olyan négyzetes mátrix, melynek transzponáltja egyben az inverze is. A térben minden tengely körüli elforgatás olyan ortogonális mátrixszal írható fel, melynek determinánsa 1. A tengely körüli elforgatás és síkra vonatkozó tükrözés szorzata pedig -1 determinánsú ortogonális mátrix.

Mátrix determinánsa (Determinant)

A determináns fogalmával mindenütt lehet találkozni, ahol négyzetes (vagy quadratikus) mátrix szerepel, azaz olyan mátrixok, amelyeknél a sorok száma megegyezik az oszlopok számával. A determináns nem más, mint egy négyzetes mátrixhoz rendelt szám.

A determináns kiszámolható kifejtéssel. az egyelemű mátrix determinánsa megegyezik az elem értékével. A másodrendű determinánst a következőképp lehet kiszámítani:

Harmadrendű determinánst a Sarrus-féle szabállyal számítjuk ki (lásd http://en.wikipedia.org/wiki/Rule_of_Sarrus).

A magasabb rendű determináns értékét úgy kapjuk meg, hogy valamely sorának elemeit megszorozzuk a hozzájuk tartozó előjeles aldeterminánsokkal, és ezeket a szorzatokat összeadjuk.

Bármely n természetes szám esetén az n-ed rendű determinánsokra igazak az alábbiak:

  • Ha a mátrix főátlója fölött (alatt) csupa 0 áll, akkor a determináns értéke a főátlóban álló elemek szorzata. Speciálisan, ha a fődiagonális minden eleme 1, és a többi elem 0, akkor a determináns értéke 1 lesz.

  • Ha a mátrix valamely sorának vagy oszlopának minden eleme 0, akkor a determináns értéke is 0.

  • Ha a mátrix egy sorát (vagy oszlopát) egy c valós számmal megszorozzuk, akkor a determináns értéke is c-szeresére változik.

  • Ha a négyzetes mátrix sorait permutáljuk, akkor páros permutálás esetén nem változik a determináns, páratlan permutálás esetén előjelet vált. Speciálisan, ha a determináns két sorát felcseréljük, az értéke -szeresére változik.

  • Ha egy mátrix két sora (vagy két oszlopa) megegyezik, akkor a determináns értéke 0.

  • A mátrix transzponáltjának a determinánsa megegyezik az eredeti mátrix determinánsával.

  • A determináns értéke nem változik, ha a mátrix egyik sorához (oszlopához) hozzáadjuk valamely másik sor (oszlop) számszorosát.

A mátrix determinánsa Gauss-eliminációval is kiszámolható. Az eljárás lényege, hogy a sorokon vagy oszlopokon végrehajtott lineáris transzformációt addig kell folytatni, míg felső háromszögmátrixhoz nem jutunk. Ekkor a determináns értékét a főátlóbeli elemek szorzataként kapjuk. A Gauss-elimináció lépései során a determináns értéke nem változik meg. A Gauss-elimináció lépései a következők:

  • Keresünk egy nem nulla elemet, és sor- vagy oszlopcserével a főátlóba tesszük. Mivel a páratlan számú cserék megváltoztatják a determináns előjelét, ezért a cserék számát feljegyezzük.

  • Az elem alatt lévő elemeket kinullázzuk. Mindezt két lépéssel lehet megoldani, a mátrix sorának számmal szorzásával, és egyik sorhoz a másik sor skalárszorosának hozzáadásával.

  • Az előző két lépést kell ismételni úgy, hogy a kiválasztott elemet mindig másik sorból és másik oszlopból választjuk.

  • Ha két sor vagy oszlop megegyezik, illetve ha egy sor vagy oszlop minden eleme 0, akkor nincs szükség további átalakításokra, mert a determináns értéke 0.

  • Különben felső háromszögmátrixot kapunk, melynek determinánsa a főátlóban álló elemek szorzata.

A mátrix inverze pedig Gauss-Jordan eliminációval határozható meg. Az algoritmus lényege az, hogy a mátrix mellé felírjuk a vele azonos méretű egységmátrixot, majd addig használjuk a sorokon vagy oszlopokon végrehajtott lineáris transzfomációt, amíg az eredeti mátrix helyén egységmátrix keletkezik. Ekkor az egységmátrix helyén kapjuk meg az inverzmátrixot. Numerikus algoritmusok megoldására ajánljuk a „Numerical Recipes: The Art of Scientific Computing” irodalmat (lásd [106]), ahol programkódokat is közölnek a szerzők.

Mátrixműveletek (Matrix Operations)

A mátrixokat a számok egy általánosításaiként tekinthetjük. Pontosabban szólva, az egyelemű mátrixokat majdnem azonosnak tekinthetjük a számokkal. Tekintettel arra, hogy számokkal különböző műveleteket lehet elvégezni, ezért lehetőség van, hogy a műveleteket általában mátrixokra is kiterjesszük. E kiterjesztésnél természetesen vigyázni kell arra, hogy speciális esetben – vagyis egyelemű mátrixokra – a művelet ugyanaz legyen, mint számokra. Két eltérés tapasztalható csak a számműveletek és a mátrixműveletek között, ugyanis a mátrixműveletek között nem szerepel az osztás, és nincs szükség a szorzás kommutativitására sem.

Mátrixok összeadása (Matrix addition and subtraction)

Az és mátrix összeadása akkor végezhető el, ha alakjuk megegyezik, azaz mindkettő mn-es. Ennek megfelelően az eredménymátrix alakja is mn-es lesz, és az mátrix i-edik sorában és j-edik oszlopában lévő elem az A, illetve B mátrix i-edik sorában és j-edik oszlopában lévő és elemek összege. Például:

Tulajdonságai:

  • Kommutatív:

  • Asszociatív:

  • Ha egy 0 nullmátrix ugyanolyan típusú, mint az A mátrix, akkor teljesül: .

  • Minden A mátrixhoz található olyan B mátrix, melyre teljesül:

    .

  • Tetszőleges A és B mátrixokhoz létezik pontosan egy olyan X mátrix, amelyre . Ezt az X mátrixot a jelöli. E mátrix előállítását értelmezhetjük a mátrixokon végzett kivonás műveleteként.

Mátrix szorzása számmal (Matrix skalar multiplication)

Egy A mátrix r valós számmal való szorzatán azt a mátrixot értjük, melyet A-ból úgy kapunk, hogy A minden elemét megszorozzuk r-rel. Például:

Tulajdonságai:

Az utolsó tulajdonság esetében értelmeznünk kell a mátrix közötti szorzást.

Mátrixok szorzása (Matrix multiplication)

A és B mátrixok között a szorzás művelete csak akkor értelmezhető, ha A-nak ugyanannyi oszlopa van, mint ahány sora B-nek. Amennyiben A -es és B -es mátrix, akkor a C szorzat mátrix egy -es típusú mátrix lesz. A szorzat mátrix -edik sorának és -edik oszlopának találkozásánál lévő elemet úgy kapjuk meg, hogy az első mátrix -edik sorának minden elemét összeszorozzuk a második mátrix -edik oszlopának minden elemével, majd a szorzatokat összeadjuk. A definíciót megfogalmazhatjuk a skaláris szorzat segítségével is. A elem az A mátrix -edik sorvektorának és a mátrix -edik oszlopvektorának a skaláris szorzata, melyet a következő képlet alapján kapunk meg:

ezt kell elvégeznünk minden elemen, azaz

tehát három egymásba ágyazott ciklussal lehet megoldani a feladatot (lásd programozási melléklet)

2.1. ábra. Az -es szorzatmátrix elemének kiszámítása

Például:

A művelet tulajdonságai:

  • Asszociatív:

  • Mindkét oldalról disztributív:

  • Skalárral való szorzás:

  • Egy -es A mátrixot akár balról, akár jobbról szorzunk egy -es egységmátrixszal, egyaránt az eredeti A mátrixot kapjuk eredményül. , ill. .

  • A mátrixok szorzása nem kommutatív: . Gyakran az is előfordul, hogy az A mátrix szorozható a B-vel, de a tényezők felcserélésével már nem értelmezhető a művelet.

  • Mátrixok szorzatának inverzére és transzponáltjára érvényesek a következő szabályok:

    Megfigyelhetjük, hogy a transzponáltakat illetve az inverz mátrixokat fordított sorrendben kell összeszorozni. Mivel a szorzás nem kommutatív, ezért fontos ügyelnünk a sorrendre.